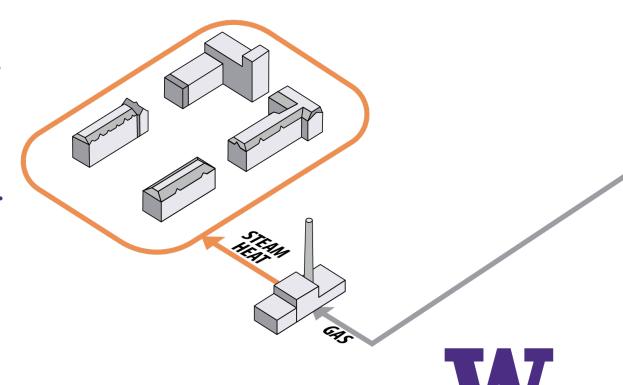
UW ENERGY STRATEGY


DECEMBER 2022

BE BOUNDLESS

UW HEATING 101

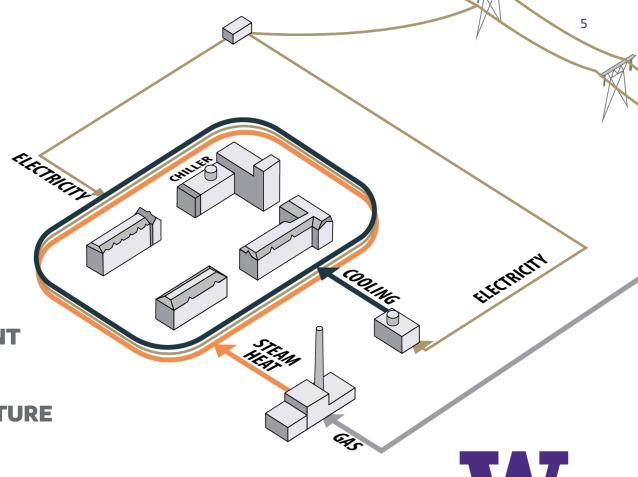
To heat buildings, we burn natural gas to create steam at our central plant and send it to buildings in tunnels.

UW COOLING 101

To cool buildings, we run electric chillers at our central plant to chill water and send it to buildings in tunnels. In addition, many buildings have their own chillers.

TIME FOR TRANSFORMATION

This heating & cooling system has served the campus well, but we face challenges and opportunities that compel us to transform this system into something even better.


CHALLENGES

GREENHOUSE GAS EMISSIONS

ENERGY EFFICIENCY

ELECTRICAL CAPACITY CONSTRAINT

AGING
UTILITY INFRASTRUCTURE

ENERGY SYSTEM ISSUES

Greenhouse Gas Emissions

Energy Consumption

Electrical Capacity Constraint

Aging Utilities Infrastructure

The Energy Transformation Strategy must address these 4 challenges

ENERGY SYSTEM ISSUES

Greenhouse Gas Emissions

Energy Consumption

Electrical Capacity Constraint

Aging Utilities Infrastructure

ENERGY EFFICIENCY

Expand metering, upgrade controls, data analytics and green revolving fund.

15% reduction in GHGs

30% energy reduction

2% more capacity

~

PHASE 1 of the strategy focuses on making our buildings more efficient through:

- Expand Metering
- Upgrade Controls
- Establish Data Analytics
- Fund Efficiency Upgrades with Utility Savings

UTILITY SAVINGS FROM EFFICIENCY

ENERGY 1 EFFICIENCY Expand metering upgra

Expand metering, upgrade controls, data analytics and green revolving fund.

CONVERT TO 2 HOT WATER

Convert from steam to hot water heating.

15% reduction in GHGs

20%

s reduction in GH0

Energy Consumption

SYSTEM ISSUES
Greenhouse Gas

ENERGY

Emissions

30% energy reduction

20%

energy reduction

Electrical Capacity Constraint

y 2% more capacity 2% less capa

Aging Utilities Infrastructure

~

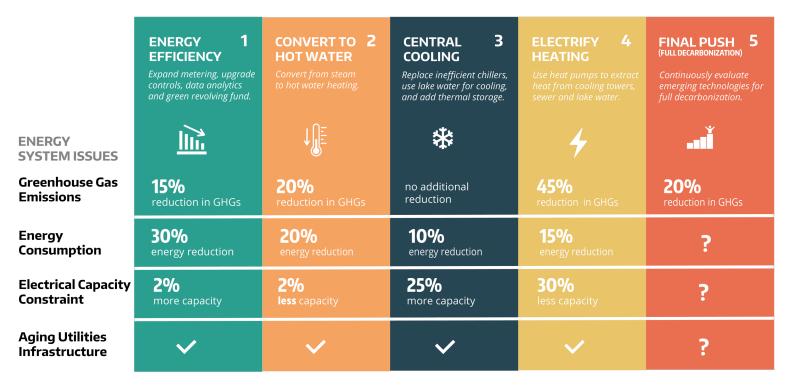
PHASE 2 enables phases 3-5

Convert from Steam to Hot Water Heating

CONVERT TO 2 **ENERGY** CENTRAL **EFFICIENCY HOT WATER** COOLING Expand metering, upgrade Replace inefficient chillers, controls, data analytics use lake water for cooling, and add thermal storage. **ENERGY SYSTEM ISSUES** Greenhouse Gas 15% 20% no additional **Emissions** reduction reduction in GHGs 10% **Energy** 30% 20% Consumption energy reduction energy reduction 25% 2% **Electrical Capacity** Constraint more capacity more capacity

PHASE 3 reduces energy costs and frees up electrical capacity

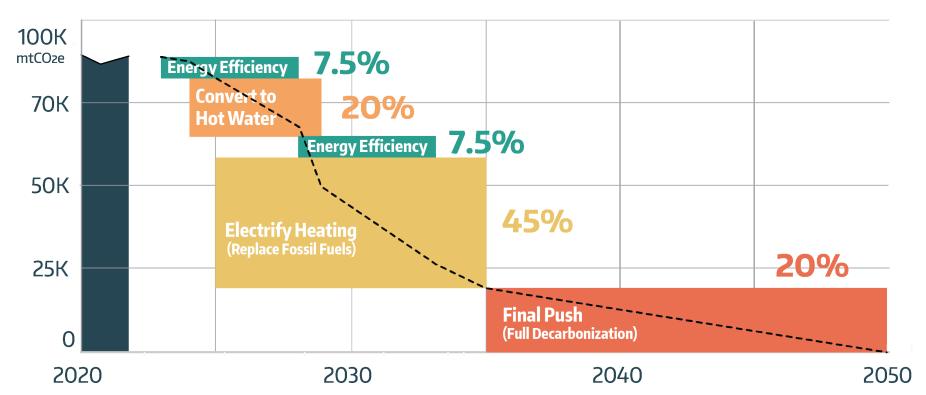
- **Replace Inefficient Chillers**
- Use Lake Water for Cooling
- Add Thermal Storage


Aging Utilities Infrastructure

CONVERT TO 2 3 **ENERGY CENTRAL EFFICIENCY HOT WATER** COOLING Expand metering, upgrade Replace inefficient chillers, controls, data analytics use lake water for cooling, and green revolving fund. and add thermal storage. **ENERGY SYSTEM ISSUES** Greenhouse Gas 15% 20% 45% no additional **Emissions** reduction 30% 10% 15% Energy 20% Consumption energy reduction energy reduction 2% 2% 25% 30% **Electrical Capacity** Constraint more capacity more capacity **Aging Utilities** Infrastructure

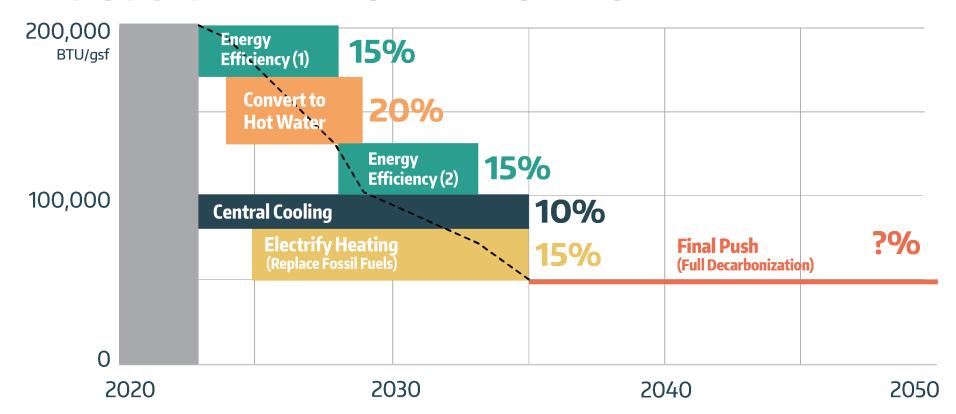
PHASE 4 is about moving away from fossil fuels

 Use Heat Pumps to extract heat from cooling towers, sewer and lake water



PHASE 5 will remove the remaining carbon from our energy system

	ENERGY 1 EFFICIENCY Expand metering, upgrade controls, data analytics and green revolving fund.	CONVERT TO 2 HOT WATER Convert from steam to hot water heating.	CENTRAL 3 COOLING Replace inefficient chillers, use lake water for cooling, and add thermal storage.	ELECTRIFY 4 HEATING Use heat pumps to extract heat from cooling towers, sewer and lake water.	FINAL PUSH (FULL DECARBONIZATION) Continuously evaluate emerging technologies for full decarbonization.	
ENERGY SYSTEM ISSUES		↓	*	4		GOAL 100% CLEAN ENERGY
Greenhouse Gas Emissions	15% reduction in GHGs	20% reduction in GHGs	no additional reduction	45% reduction in GHGs	20% reduction in GHGs	100% reduction in GHGs
Energy Consumption	30% energy reduction	20% energy reduction	10% energy reduction	15% energy reduction	?	75% Reduction in Energy Use
Electrical Capacity Constraint	2% more capacity	2% less capacity	25% more capacity	30% less capacity	?	Accommodate Capacity Constrain
Aging Utilities Infrastructure	~	~	~	~	?	Resilient Infrastructure


TRANSFORMATION STRATEGY OVER TIME:

FOCUS ON GHG EMISSIONS

TRANSFORMATION STRATEGY: OVER TIME

FOCUS ON ENERGY EFFICIENCY

TRANSFORMATION STRATEGY:

COST

ENERGY EFFICIENCY

Expand metering, upgrade controls, data analytics and green revolving fund.

\$18M

for metering and controls, money spent on efficiency is recouped through utility savings

CONVERT TO 2 HOT WATER

Convert from steam to hot water heating.

~\$250M

this reflects the cost of routing new pipes and updating the heat exchangers at buildings

CENTRAL 3 COOLING

Replace inefficient chillers, use lake water for cooling, and add thermal storage.

~\$100M

this reflects the cost of new chillers and decomissioning aging chillers

ELECTRIFY HEATING

Use heat pumps to extract heat from cooling towers, sewer and lake water.

~\$100M

for heat pumps and piping to extract lake cooling

~\$100M

for thermal storage

FINAL PUSH 5

Continuously evaluate emerging technologies for full decarbonization.

?

this will depend upon emerging technologies

Source

Cost

(rough order of

magnitude)

UW Facilities

a combination of state support, grants, indirect tax incentives, utility payments to a 3rd party and green bond debt funding

WHAT WE NEED

- UW wide initiative and commitment (led by UWF)
- Engaged partners and stakeholders
- Financing strategy support

CURRENT AND NEXT STEPS

We have begun to escalate investment in efficiency

We are purchasing new meters and building controls and are seeking funds for data analytics

We are working on a contract for an engineering firm to refine the technical and financial elements of the energy strategy.

We are developing an initial hot water conversion project (WCUP loop)

Thank you for your interest and support

Send questions to:

David Woodson

Director of Energy, Utilities and Operations dwoodson@uw.edu