News Source: 
UW Today
August 7, 2013

Organic solar cells that convert light to electricity using carbon-based molecules have shown promise as a versatile energy source but have not been able to match the efficiency of their silicon-based counterparts.

Now, researchers have discovered a synthetic, high-performance polymer that behaves differently from other tested materials and could make inexpensive, highly efficient organic solar panels a reality.

The polymer, created at the University of Washington and tested at the University of Cambridge in England, appears to improve efficiency by wringing electrical current from pathways that, in other materials, cause a loss of electrical charge.

“In most cases you are generating charge but you have to out-compete all the areas of loss that keep you from delivering the electricity from the cell to the device you are trying to power,” said Cody Schlenker, a postdoctoral researcher in the laboratory of David Ginger, a UW chemistry professor.

“These materials can be printed like newspaper and manufactured into rolls of film like plastic wrap, so they could have a significant manufacturing cost advantage over traditional materials like silicon,” Ginger said.

Schlenker and Ginger are co-authors of a paper analyzing the new material, published online Aug. 7 in Nature. The lead authors are Akshay Rao and Richard Friend of Cambridge, who with Cambridge researchers Philip Chow and Simon Gelinas did sensitive measurements that confirmed the properties of the polymer. The material was created in the lab of co-author Alex Jen, a UW professor of materials science and engineering.